
Final Report Rubric
Team Tritons

Akshat Muir, Michael Garcia-Perez, Jasmine Lo, Asif Mahdin, Aritra Das

Problem Statement

Every year, multiple people apply for loans to be able to afford a home. Given this necessity,
banks must find a way to decipher which people are more or less likely to default on a loan if their
application is approved. Traditionally, lenders look at credit score to determine an applicant’s decision, but
what happens when someone doesn’t have a credit score? We would have to look at other factors of their
spending, income, and saving. Therefore, a model must be made, and an accurate one, to be able to help
companies determine who is eligible for a home loan or not. The dataset we were working with was very
large, with around 32 gigabytes of data, making the training process very long. Furthermore, this data
consisted of various financial information regarding people’s past. Some examples include, but are not
limited to, contracts, loans, failed payments, amount of late payments, account balance, etc. These types
of data give insight to a person’s past financial behaviors and could be used to predict whether they will
default on their home loans or not. One way to evaluate how well our model is performing is to split our
data up into train and validation sets in order to ensure that our results will be similar in our test set.
Another direct way of measuring the model’s performance is through a Gini score. A gini score estimates
a model’s performance through taking the ratio of the area under the ROC curve plus that of a perfectly
linear line through the middle of the graph between the axes of the True positive rate and the False
positive rate. The reason there is a line in the middle is to represent how a model would perform if it were
to spit out random guesses at classifying, making it a 50-50 chance. The ROC curve, if it bends above the
linear line, will reflect a Gini score that is above 0.5. If it is below the linear line, that will reflect a score
that is below 0.5. If the model is a 100% perfect classifier then the Gini score will be a 1. It is through this
information that we’re able to build various models that utilize past financial transactions to estimate who
would be a good fit for a home loan and who wouldn’t. In the future, loaning agencies can use such
models to help predict whether a customer would fail to pay his home loan or not, instead of relying on
something as seemingly arbitrary as a credit score.

Potential Strategies and Approach

1. Gradient Boosting Models:
○ XGBoost: Already used with good results. Known for handling missing values and

capturing complex patterns.
○ LightGBM: Another gradient boosting framework that is faster and more efficient with

large datasets.
○ CatBoost: Specifically designed to handle categorical features, which could be beneficial

if we decide to include categorical data in the future.
2. Ensemble Methods:

○ Stacking: Combining multiple models (e.g., XGBoost, LightGBM, CatBoost) to leverage
their individual strengths.

○ Blending: A simpler approach than stacking, where the final predictions are a weighted
average of multiple models.

3. Regularization Techniques:



○ Elastic Net Regularization: A combination of L1 and L2 regularization that could be
applied to linear models to handle multicollinearity and feature selection.

○ Feature Selection: Using techniques like Recursive Feature Elimination (RFE) or
Feature Importance from tree-based models to select the most relevant features.

4. Feature Engineering:
○ Interaction Features: Creating new features that capture interactions between existing

features.
○ Aggregation of Historical Data: Summarizing historical data into meaningful statistics

(e.g., mean, median, standard deviation) to capture trends over time.
○ Missing Value Indicators: Creating binary indicators for missing values, allowing models

to learn patterns associated with missingness.

Adaptation for the Specific Problem

1. Handling Missing Values:
○ Using models like XGBoost, LightGBM, and CatBoost, which inherently handle missing

values, allows for the inclusion of more features without extensive preprocessing.
2. Focus on Stability:

○ Incorporating stability directly into the training process by using cross-validation
strategies that respect the temporal nature of the data and using L1 and L2 regularization
to avoid overfitting.

Key Findings in Model Development

Initial Approach: Logistic Regression

What We Tried:

● Model: Logistic Regression
● Features: 20 manually selected columns deemed important
● Handling Nulls: Imputed missing values with 0 for numerical columns and the mode for

categorical columns

Why We Tried It:

● Logistic regression is a simple, interpretable model and often serves as a good baseline.

Outcome:

● Gini Score: 0.08 (private score)
● The model performed poorly, likely due to its inability to handle the complexity of the data and the

suboptimal handling of missing values.

Evidence:

● The low Gini score indicates poor discrimination between defaulters and non-defaulters.



Experiment: Logistic Regression Column Inputs

What We Tried:

● Tested different subsets of columns to see which were important and could increase our stability
and which would actually decrease stability.

Why We Tried It:

● Because the overhead of training the logistic regression model is so high, we could only train a
subset of columns at once. Due to this limitation, we wanted to choose the best subset possible
to optimize our score.

Outcome:

● Gini Score: 0.22 on test subset created from training dataset
● The model performed slightly better than our original baseline, with scores oscillating between

0.18 (for testing which columns were irrelevant) and 0.22 (to see which columns, when added,
improved stability).

Evidence:

● The range in Gini scores we saw showed that there were indeed columns that could make the
model more stable, and on the other hand, columns that could make the model less stable.

Transition to XGBoost

What We Tried:

● Model: XGBoost
● Features: 400 continuous columns
● Handling Nulls: Utilized XGBoost's inherent ability to handle missing values

Why We Tried It:

● XGBoost is known for its ability to handle large datasets with many features, including those with
missing values. It also captures complex, non-linear relationships.

Outcome:

● Gini Score: 0.54 (private score)
● Significant improvement in performance due to the model's ability to utilize more features and

effectively handle missing values.

Evidence:

● The substantial increase in Gini score from 0.08 to 0.54 demonstrates the model's enhanced
capability in predicting loan defaults.



Hyperparameter Tuning

What We Tried:

● Hyperparameters: Adjusted parameters like max_depth, learning_rate, n_estimators,
colsample_bytree, colsample_bynode, alpha, and lambda.

Why We Tried It:

● To optimize the model's performance by fine-tuning its complexity and regularization.

Outcome:

● Improved stability and slightly better performance, with more consistent cross-validation scores.

Evidence:

● CV AUC scores became more stable, and the model exhibited better generalization across
different folds.

Justifications for Decisions

● Initial Logistic Regression: Served as a simple and interpretable baseline.
● Switch to XGBoost: Chosen for its robustness in handling missing data and capturing complex

relationships.
● Hyperparameter Tuning: Necessary to optimize model performance and prevent overfitting.
● Advanced Cross-Validation: Ensured that the model remained stable over time, a critical aspect

given the competition's focus on stability.
● Feature Engineering: Aimed to enhance the model's ability to capture relevant patterns and

relationships in the data, leveraging both existing and new features effectively.

Overview of Final Entries

For our final models, we submitted two models: our initial logistic regression model and a
fine-tuned XGBoost model.

For our initial logistic regression model, the expected Gini score was 0.09, with the lower bound
being 0.05 and the upper bound being 0.12. We submitted this model to the final submission because we
wanted to show the progress our team had made in model development since our last presentation. The
model’s performance was not the best so we pivoted our development to XGBoost. The second and last
model that we submitted was the Fine-Tuned XGBoost Model. The expected score of our XGBoost Model
was 0.510, the lower bound 0.484, and the upper bound 0.577.

We chose the upper, lower, and expected gini score values from our stratified cross validation
scores. The lower bound was the lowest score that we got in the SCV, the upper bound was the highest
values of the SCV, and the expected score was the average score.

On the day of presentation, we were surprised that our model performed way higher than the
upper bound gini score that we got from stratified CV testing. We hypothesized that because the test case
was built from the training data that our model had, there might have been some data leakage making it



so that the model could perform much better than expected.

Retrospective Analysis

What went right in our approach was submitting a final model that we understood well and knew
how to optimize. We ultimately chose XGBoost over LightGBM or CatBoost because we were more
familiar with its framework compared to the other two. With XGBoost, we were more accustomed to
optimizing its parameters and identifying feature importance. This worked well for us, as we scored well in
the competition and created a model that better generalized the hidden data instead of overfitting to the
training data. What went wrong was not spending enough time optimizing parameters for XGBoost. We
had written a program to test different values for the parameters (learning rate, max depth, regularization
terms, etc.) and to choose the optimal ones, but we ran out of time and could not include this in our
Kaggle submission. Additionally, we could have created more features but did not, as we already felt
overwhelmed with all the data available to us. Specifically, we did not conduct as much feature
engineering as we would have liked because we felt it would only marginally improve our final model. On
the other hand, what went right for our baseline model (logistic regression) was that it was also easy to
understand and work with. We ran tests on the model and could understand results easily, finding the
best columns to use to optimize our model. However, what went wrong was that it did not perform as well
as we expected. Even with our experiments, while accuracy improved by a decent percentage, it was
overall still lower than the XGBoost model. We only included 20 features at a time in this baseline model
due to runtime barriers, so it could not learn from the training data effectively.

In hindsight, our baseline logistic regression model could have been improved by incorporating
more features and optimizing the model with regularization. We believe that by adding regularization, we
could make our model more generalized and thus improve our Gini score by preventing overfitting to the
training data. Our XGBoost model could also have been improved by optimizing the hyperparameters, as
mentioned earlier, given that we could not include the program to do this in our final submission.
Optimizing the hyperparameters would have increased the performance, generalization ability, and
convergence speed. We also believe that including more features in our model, as well as creating new
features, would have helped us improve both models.

The next steps we would take, given more time, would be to first fix the performance issues of our
baseline model by incorporating more features and adding regularization. Then, to improve the XGBoost
model, we would add the program we coded to optimize the hyperparameters and find ways to add and
create more features for the model. If time permits, we would also create an ensemble of different
boosting models to leverage the strengths of each model and improve overall performance. Specifically,
we would create such an ensemble through stacking, voting, and averaging. This approach would
hopefully help reduce variance and bias, leading to more robust and accurate predictions.


