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Abstract

In this paper, we are trying to replicate the results from the paper “Multi-
morbidity states associated with higher mortality rates in organ dysfunction
and sepsis: a data-driven analysis in critical care” by Zador et al., where they
focused on the issue that no consideration were given to the medical back-
ground of sepsis patients. They hypothesized the existence of patient sub-
groups in critical care with distinct multimorbidity states and certain mul-
timorbidity states are associated with higher rates of organ failure, sepsis,
and mortality co-occurring with these clinical problems. The primary objec-
tive of this replication study is to rigorously verify and validate the findings
of the original research conducted by Zador et al. on multimorbidity states
and their association with higher mortality rates in organ dysfunction and
sepsis in a critical care setting. Through this replication, we aim to confirm
the robustness and reproducibility of the original study’s conclusions, thereby
strengthening the evidence base surrounding the impact of multimorbidity on
critical care outcomes.

Code: https://github.com/kshannon-ucsd/ucsd-dsc180ab-team1
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1 Introduction
Sepsis is one of the most complicated and emergency medical conditions in the world,
and the diagnosis for the disease needs to be timely in order to reduce the mortality rate.
However, due to its heterogeneity and unspecific nature, along with the countless possible
combinations of morbidity, most of the warning systems have low predictive values and are
often subject to inappropriate treatments (Ifedayo Kuye 2018).
In the paper by Zador et al, they tried to tackle the problem by through identifying patient
groups from the seemingly cluttered patient history data. By identifying unique patient
groups, treatment plans can be made more efficiently and accurately, and the findings can
also be beneficial to future patients.
We are using a dataset called MIMIC-III (Johnson et al. 2016) from PhysioNet (PhysioBank
2000). It is a relational database consisting of 26 tables that can be linked by identifiers,
comprising deidentified health-related data associated with over forty thousand patients
who stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001
and 2012. It is an extremely useful dataset when it comes to analysis since it includes infor-
mation such as demographics, vital sign measurements made at the bedside, laboratory test
results, procedures, medications, caregiver notes, imaging reports, diagnoses (represented
by ICD-9 codes) and mortality (including post-hospital discharge). We will be using some
of these variable in our analysis (Johnson, Pollard and Mark III 2016).

2 Methods

2.1 Cohort selection
Our initial approach with cohort selection used the filter provided in the paper by Zador
et al, which included two key criteria: the patients where age is 16 and over and also the
first time admissions for each of them. However, our first endeavor proved to be unsuc-
cessful. Even though we did come close to the cohort in the paper in terms of number, the
distribution of age groups is significantly off when compared with the supplementary table
provided in the paper. Our second approach is more successful after we located the Github
repository (Johnson et al. 2018) from the contributors of the MIMIC-III data, who provided
a detailed guidance on the cohort selection method, including formulas for calculating age
and retrieving the first admission.

2.2 Clustering and Latent Class Analysis
The paper started the analysis with k-means clustering, and that naturally became our
first step too. We calculated the disease similarities, which is based on the prevalence of
diseases in the population, within different age groups and employed Euclidean distance
as a measure of similarity to establish cluster relationships just like the paper.
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For the subsequent exploration of patient subgroups, we utilized latent class analysis (LCA),
incorporating age, admission type (elective vs. non-elective), and morbidity composition
using 30 Elixhauser categories. This method assumes the existence of unobserved (”latent”)
subgroups within the study cohort and identifies them by fitting a series of mixture models
to the data. The optimal number of subgroups was chosen based on a combination of
achieving the lowest Bayesian information criteria (BIC) and Akaike information criteria
(AIC), with the additional criterion that subgroup size should not be smaller than 5% of the
entire study cohort. This approach corresponds with the method used in the paper we are
trying to replicate.
To compare the characteristics of the latent subgroups, we employed the chi-square test for
categorical variables and one-way ANOVA for continuous variables. Residual diagnostics
were applied to ensure that ANOVA assumptions were not violated, and expected values
were calculated to confirm that the chi-square test assumptions were upheld.
The methods described by this section all followed the procedures used in the paper (Zador
et al. 2019).

3 Results

3.1 K-Means
Using our results from LCA, we can use these subgroups and visualize clusters that will in-
form us of any patterns we may see between the age groups and the Elixhauser categories.
After combining all of our subgroups data into a single DataFrame and adding a column
to determine the age group, we were able to pass it into our K-Means class. The result was
three different clusters, illnesses that were more prevalent within younger age groups over
older age groups, illnesses that were more prevalent in older age groups over younger age
groups, and illnesses that had a generally low prevalence throughout all age groups.

In our first cluster, we got the data of all illnesses that were generally more prevalent in
younger age groups. This cluster consisted of Pulmonary Circulation, Hypertension, Dia-
betes Complicated, and Metastatic Cancer. The results are shown in the table below:

Figure 1: Illnesses More Prevalent in Younger Age Groups

Similarly, in our second cluster, we got the data of illnesses that weremore prevalent in older
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patients than younger patients. We gathered that Peripheral Vascular and Solid Tumors
were much more prevalent in older age groups. The results are shown in the table below:

Figure 2: Illnesses More Prevalent in Older Age Groups

In the third cluster, we got the data of illnesses that had a low prevalence throughout all
age groups. This cluster consisted of Congestive Heart Failure, Cardiac Arrhythmias, Valvu-
lar Disease, Paralysis, Other Neurological, Chronic Pulmonary, Diabetes Uncomplicated,
Hypothyroidism, Renal Failure, Liver Disease, Peptic Ulcer, Aids, Lymphoma, Rheumatoid
Arthritis, Coagulopy, Obesity, Weight Loss, Fluid Electrolyte, Blood Loss Anemia, Deficiency
Anemias, Alcohol Abuse, Drug Abuse, Psychoses, and Depression. The results are shown
on page 5 (Figure 3).

3.2 LCA
Our efforts to replicate the original findings revealed a notable deviation despite the robust-
ness of our applied methodologies. We began with a preliminary analysis using k-means
clustering to evaluate disease similarities, considering prevalence across various age brack-
ets and utilizing Euclidean distance for cluster similarity assessments. This was followed by
a deeper examination through Latent Class Analysis (LCA), where we factored in variables
like age, admission type, and morbidity composition. Our analysis identified six distinct
subgroups within the study cohort, generally aligning with the original study’s conclusions.
However, our replication highlighted a divergence from the original study: we found that
two of these subgroups fell under the 5% threshold, contrary to the original findings. This
discrepancy, while within a reasonable margin, underscores the intricate and sometimes
unpredictable nature of data-driven research in medical studies. It also emphasizes the
necessity for ongoing scrutiny and adaptation in the application of machine learning in
healthcare, as even well-established methodologies can yield varied results under different
circumstances.

Subgroup Count Percentage
1 7422 7.19
2 2188 2.12
3 9262 8.98
4 12861 12.47
5 4736 4.59
6 66703 64.65
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Figure 3: Illnesses With Low Prevalence Throughout All Age Groups
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4 Discussion

4.1 K-Means
While our results from K-Means do show us correct separation into the same three cate-
gorical groups, they are not an exact match to the paper we were trying to replicate. For
instance, in the paper, they obtained that the illnesses that were more prevalent for younger
age groups than older age groups were other neurological disorders, coagulation, depres-
sion, liver disease, alcohol abuse, and drug abuse. While none of them were in our cluster,
this is because our results from LCA may have not given us the same subgroups as the pa-
pers results from LCA. Therefore, this throws off the results found in the cluster. This does
not mean that our results are incorrect, it just means that for our subgroups found from
LCA as mentioned above. These are the clusters we received. Furthermore, by looking at
the prevalence of each illness you’ll actually see that they are categorized correctly.

4.2 LCA
Our analysis of Latent Class Analysis (LCA) outcomes differs from those presented in the
referenced paper due to the lack of access to the original study’s code and methodology for
handling missing data. This limitation highlights the significant impact that data cleaning
and preprocessing have on research outcomes, especially in LCA. Our findings emphasize
the importance of transparent and detailed data preprocessing methods in research to en-
sure reproducibility and accurate interpretation of results
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